
Parallax Photography: Creating 3D Cinematic Effects from Stills

Ke Colin Zheng

University of Washington

Alex Colburn

University of Washington

Aseem Agarwala

Adobe Systems, Inc.

Maneesh Agrawala

University of California, Berkeley

David Salesin

Adobe Systems, Inc.

Brian Curless

University of Washington

Michael F. Cohen

Microsoft Research

ABSTRACT

We present an approach to convert a small portion of a light field
with extracted depth information into a cinematic effect with sim-
ulated, smooth camera motion that exhibits a sense of 3D parallax.
We develop a taxonomy of the cinematic conventions of these ef-
fects, distilled from observations of documentary film footage and
organized by the number of subjects of interest in the scene. We
present an automatic, content-aware approach to apply these cin-
ematic conventions to an input light field. A face detector identi-
fies subjects of interest. We then optimize for a camera path that
conforms to a cinematic convention, maximizes apparent parallax,
and avoids missing information in the input. We describe a GPU-
accelerated, temporally coherent rendering algorithm that allows
users to create more complex camera moves interactively, while
experimenting with effects such as focal length, depth of field, and
selective, depth-based desaturation or brightening. We evaluate and
demonstrate our approach on a wide variety of scenes and present
a user study that compares our 3D cinematic effects to their 2D
counterparts.

Keywords: Image-Based Rendering, Photo and Image editing

Index Terms: I.3.6 [COMPUTER GRAPHICS]: Methodology
and Techniques—Graphics data structures and data types;

1 INTRODUCTION

Documentary filmmakers commonly use photographs to tell a story.
However, rather than placing photographs motionless on the screen,
filmmakers have long used a cinematic technique called “pan &
zoom,” or “pan & scan,” to move the camera across the images and
give them more life. The earliest such effects were done manually
with photos pasted on animation stands, but they are now generally
created digitally. This technique, which goes by the name of the
“Ken Burns effect,” after the documentary filmmaker who popular-
ized it, is now a ubiquitous feature in consumer photography soft-
ware such as Apple iPhoto, Google Picasa, Photoshop Elements,
and Microsoft PhotoStory.

In recent years, filmmakers have begun infusing photographs with
more realism by adding depth to them, resulting in motion parallax
between near and far parts of the scene as the camera pans over
a still scene. This cinematic effect, which we will call 3D pan &
scan, is now used extensively in documentary filmmaking, as well
as TV commercials and other media, and is replacing traditional 2D
camera motion, because it provides a more compelling and lifelike
experience.

However, creating such effects from a still photo is painstakingly
difficult. The photo must be manually separated into different lay-
ers, and each layer’s motion animated separately. In addition, the
background layers are typically painted in by hand so that no holes

appear when a foreground layer is animated away from its original
position.1

In this paper we look at how 3D pan & scan effects can be cre-
ated much more easily, albeit with a small amount of additional
input. Indeed, our goal is to make creating such cinematic effects
so easy that regular users can create them from their snapshots
and include them in their photo slide shows with little or no ef-
fort. To that end, we propose a solution to the following problem:
given a small portion of a light field [19, 6], produce a 3D pan and
scan effect automatically (or semi-automatically if the user wishes
to influence its content). In most of our examples, the input light
field is captured with and constructed from a few photographs from
a hand-held camera. We also include results from two one-shot,
multi-viewpoint cameras, for which we envision our solution will
be most useful. Some predict that the commodity camera of the
future will have this capability [18] (perhaps beginning with the re-
cently announced consumer stereo camera “Fuji FinePix Real3D”).

The 3D pan & scan effects are generated to satisfy two main design
goals:
1. The results should conform to the cinematic conventions of pan
& scan effects currently used in documentary films.
2. The conventions should be applied in a fashion that respects the
content and limitations of the input data.
Our approach takes as input a light field representation that contains
enough information to infer depth for a small range of viewpoints.
For static scenes, such light fields can be captured with a standard
hand held camera [25] by determining camera pose and scene depth
with computer vision algorithms, namely structure-from-motion [8]
and multi-view stereo [28]. Capturing and inferring this type of in-
formation from a single shot has also received significant attention
in recent years. There are now several camera designs for captur-
ing light fields [23, 5, 20] from which scene depth can be esti-
mated [28]. Other specialized devices, such as coded imaging sys-
tems, capture single viewpoints with depth [17].

Light fields with depth have the advantage that they can be rela-
tively sparse and still lead to high quality renderings [6, 20] for
scenes without strong view-dependent lighting effects such as mir-
rored surfaces. However, such sparse inputs, taken over a small spa-
tial range of viewpoints or even a single viewpoint, present limita-
tions: novel viewpoints must stay near the small input set, and even
then some portions of the scene are not observed and thus will ap-
pear as holes in new renderings. Our approach is designed to take
these limitations into account when producing 3D pan & scan ef-
fects.

Our solution processes the input to produce 3D pan & scan effects
automatically or semi-automatically to satisfy our design goals. To
achieve the first goal, we describe a simple taxonomy of pan &
scan effects distilled from observing 22 hours of documentary films
that heavily employ them. This taxonomy enables various com-
municative goals, such as “create an establishing shot of the en-
tire scene”, or “transition from the first subject of interest to the

1http://blogs.adobe.com/bobddv/2006/09/son_of_ben_

kurns.html

second”. Second, we describe algorithms for analyzing the scene
and automatically producing camera paths and effects according to
our taxonomy. Our solution then applies the appropriate effect by
searching the range of viewpoints for a linear camera path that satis-
fies cinematic conventions while avoiding missing information and
holes, and maximizing the apparent parallax in the 3D cinematic
effect. Third, we describe GPU-accelerated rendering algorithms
with several novel features: (1) a method to interleave pixel colors
and camera source IDs to multiplex rendering and guarantee opti-
mal use of GPU memory; (2) the first GPU-accelerated version of
the soft-z [26] technique, which minimizes temporal artifacts; and
(3) a GPU-accelerated inverse soft-z approach to fill small holes and
gaps in the rendered output.

In the rest of this paper we describe the components of our ap-
proach, which include a taxonomy of the camera moves and other
image effects found in documentary films (Section 3); techniques
for automatically computing 3D pan & scan effects that follow this
taxonomy (Section 4); a brief overview of our representation of
a light field with depth and how we construct it from a few pho-
tographs (Section 5); and finally two rendering algorithms, both
real-time (Section 6.1) and off-line (Section 6.2). We then demon-
strate results for multiple photos taken with a single camera, as well
as two multi-viewpoint cameras (Section 7). Finally, we describe
the results of a user study with 145 subjects that compares the ef-
fectiveness of 3D vs. 2D pan & scan effects (Section 8).

2 RELATED WORK

The process of creating a 3D pan & scan effect is challenging and
time consuming. There are a number of techniques that help in cre-
ating 3D fly-throughs from a single image, such as Tour Into the
Picture [12] and the work of Oh et al. [24], though the task remains
largely manual. Hoiem et al. [11] describe a completely automatic
approach that hallucinates depths from a single image. While their
results are impressive, substantially better results can be obtained
with multiple photographs of a given scene.

To that end, image-based rendering (IBR) techniques use multiple
captured images to support the rendering of novel viewpoints [14].
Our system builds a representation of a small portion of the 4D
light field [19, 6] that can be used to render a spatially restricted
range of virtual viewpoints, as well as sample a virtual aperture to
simulate depth of field. Rendering novel viewpoints of a scene by
re-sampling a set of captured images is a well-studied problem [1].
IBR techniques vary in how much they rely on constructing a geo-
metric proxy to allow a ray from one image to be projected into the
new view. Since we are concerned primarily with a small region of
the light field, we are able to construct a proxy by determining the
depths for each of the input images using multi-view stereo [34],
similar to Heigl et al. [10] . This approach provides us the bene-
fits of a much denser light field from only a small number of in-
put images. Our technique merges a set of images with depth in a
spirit similar to the Layered Depth Image (LDI) [29]. However, we
compute depths for segments, and also perform the final merge at
render time. Zitnick et al. [35] also use multi-view stereo and real-
time rendering in their system for multi-viewpoint video, though
they only allow novel view synthesis between pairs of input view-
points, arranged on a line or arc. Most IBR systems are designed
to operate across a much wider range of viewpoints than ours and
typically use multiple capture devices and a more controlled envi-
ronment [32, 18]. To date, the major application of capturing a small
range of viewpoints, such as ours, has been re-focusing [21, 22].

A number of papers have used advanced graphics hardware to ac-
celerate the rendering of imagery captured from a collection of
viewpoints. The early work on light fields [19, 6] rendered new

Subjects Camera moves Image effects

of interest

0 Establishing dolly, Dolly-out

1 Dolly in/out, Dolly zoom Change DOF,

Saturation/brightness

2 Dolly Pull focus, Change DOF

Table 1: A taxonomy of camera moves and image effects. DOF
refers to depth of field.

images by interpolating the colors seen along rays. The lightfield
was first resampled from the input images. The GPU was used
to quickly index into a lightfield data structure. In one of the
early works leveraging per-pixel depth, Pulli et al. [26] created
a textured triangle mesh from each depth image and rendered and
blended with constant weights. They also introduced the notion of a
soft-z buffer to deal with slight inaccuracies in depth estimation. We
take a similar approach but are able to deal with much more com-
plex geometries, use a per-pixel weighting, and have encoded the
first soft-z into the GPU acceleration. Buehler et al. [1] rendered
per-pixel weighted textured triangle meshes (one simple mesh per
light field). We use a similar per-pixel weighting, but are also able
to deal with much more complex and accurate geometries. We also
use a “reverse soft-z” buffer to fill holes caused by disocclusions
during rendering.

Automatic cinematography that follows common film idioms has
been explored in the context of virtual environments, e.g., by He et
al. [9]; we focus on the idioms used in 3D pan & scan effects.

3 3D PAN & SCAN EFFECTS

Our first design goal is to automatically create 3D pan & scan ef-
fects that follow the conventions in documentary films. To that end,
we examined 22 hours of documentary footage in order to extract
the most common types of camera moves and image effects. We ex-
amined both films that employ 2D pan & scan effects (18.5 hours,
from the Ken Burns films The Civil War, Jazz, and Baseball) and the
more recent 3D pan & scan technique (3.5 hours, The Kid Stays in
the Picture, and Riding Giants). These films contained 97 minutes
of 2D effects and 16 minutes of 3D effects. Of these 113 minutes,
only 9 exhibited non-linear camera paths; we thus ignore these in
our taxonomy (though, as described in Section 4.4, curved paths
can be created using our interactive authoring tool). Of the remain-
ing 104 minutes, 102 are covered by the taxonomy in Table 1 and
described in detail below (including 13 minutes that use a concate-
nation of two of the effects in our taxonomy).

We organize our taxonomy according to the number of “subjects of
interest” in a scene: zero, one, or two. For each number there are
several possible camera moves. There are also several possible im-
age effects, such as changes in saturation or brightness of the sub-
jects of interest or background, or changes in depth of field. These
effects are typically used to bring visual attention to or from a sub-
ject of interest. The complete set of 3D pan & scan effects in our
taxonomy includes every combination of camera move and image
effect in Table 1 for a specific number of subjects of interest (e.g.,
no image effect is possible for zero subjects of interest). The most
typical subject of interest used in these effects is a human face.

For scenes with no specific subject of interest, we observed two
basic types of “establishing shots.” These shots depict the entire
scene without focusing attention on any specific part. In one type
of establishing shot, the camera simply dollies across the scene in
order to emphasize visual parallax. We will call this an establishing
dolly. In the other type of establishing shot, the camera starts in
close and dollies out to reveal the entire scene. We will call this an
establishing dolly-out.

For scenes with a single subject of interest, two types of camera
moves are commonly used. The first uses a depth dolly to slowly
move the camera in toward the subject, or, alternatively to pull
away from it. We will call this type of move a dolly-in or dolly-
out. A variant of this move involves also reducing the depth of field
while focusing on the subject to draw the viewer’s attention. An-
other variant, which can either be combined with a changing depth
of field or used on its own, is an image effect in which either the
subject of interest is slowly saturated or brightened, or its comple-
ment (the background) desaturated or dimmed. The other type of
camera move sometimes used with a single subject of interest is a
kind of special effect known as a dolly zoom. The camera is dollied
back at the same time as the lens is zoomed in to give an intriguing,
and somewhat unsettling, visual appearance. This particular camera
move was made famous by Alfred Hitchcock in the film, Vertigo,
and is sometimes known as a “Hitchcock zoom” or “Vertigo ef-
fect.” Like the other single-subject camera moves, this move works
equally well in either direction.

Finally, for scenes with two primary subjects of interest, the camera
typically dollies from one subject to the other. We call this move,
simply, a dolly. There are two variations of this move, both involv-
ing depth of field, when the objects are at substantially different
depths. In the first, a low depth-of-field is used, and the focus is
pulled from one subject to the other as the camera is simultane-
ously dollied. In the other, the depth of field itself is changed, with
the depth of field either increasing to encompass the entire scene
by the time the camera is dollied from one subject to the other, or
else decreasing to focus in on the second subject alone by the time
the camera arrives there. In general, any of the camera moves for
scenes with n subjects of interest can also be applied to scenes with
more than n. Thus, for example, scenes with two or more subjects
are also amenable to any of the camera moves for scenes with just
one.

4 AUTHORING

In this section, we describe how to generate 3D pan & scan effects,
initially focusing on automatically generated effects that follow our
taxonomy, and concluding with an interactive key-framing system.

The input to this step is a light field with depth information. We as-
sume that the input light field is sparse, and that novel views can be
synthesized by projecting and blending textured depth maps. Due to
the sparseness of the input, however, novel renderings will typically
exhibit holes. While small holes can often be inpainted, large holes
are best avoided. Computing a 3D pan & scan effect automatically
from this input requires solving three problems. First, an effect ap-
propriate for the imaged scene must be chosen from the taxonomy
in Table 1. Second, a linear camera path must be computed that fol-
lows the intent of the effect and respects the limited sampling of the
input. Third, any associated image effects must be applied.

4.1 Choosing the effect

Choosing an effect requires identifying the number of subjects of
interest. In general, it is difficult, sometimes impossible, to guess
what the user (or director) intends to be the subjects of interest in
a scene. However, for our automatic system, a natural guess for a
scene with people is to select their faces. We therefore run a face
detector [33] on the centermost input view and count the number of
faces. Then, one of the effects from the appropriate line in Table 1 is
randomly chosen. The possible effects include image effects such as
changing depth of field and focus pulls. Saturation and brightness
changes, however, are left to the interactive authoring system, as
they are less likely to be appropriate for an arbitrary scene.

4.2 Choosing a camera path

Each of the camera moves used in 3D pan & scan effects described
in section 3 can be achieved by having the virtual camera follow
a suitable path through camera parameter space. This parameter
space includes the 3D camera location, the direction of the cam-
era optical axis, and focal length. All of these parameters can vary
over time. If we assume that all parameters are linearly interpolated
between the two endpoints, the problem reduces to choosing the pa-
rameter values for the endpoints. The result is 6 degrees of freedom
per endpoint — 3 for camera position, 2 for the optical axis (we ig-
nore camera roll, uncommon in pan & scan effects), and 1 for focal
length — and thus 12 degrees of freedom overall (two endpoints).
A candidate for these 12 parameters can be evaluated in three ways.
1. The camera path should follow the particular 3D pan & scan con-
vention.
2. The camera path should respect the limitations of the input. That
is, viewpoints that require significant numbers of rays not sampled
in the input should be avoided (modulo the ability to successfully
fill small holes).
3. The camera path should be chosen to clearly exhibit parallax in
the scene (as we show in our user study in Section 8, users prefer
effects that are clearly 3D). Unfortunately, finding a global solution
that best meets all 3 goals across 12 degrees of freedom is com-
putationally intractable. The space is not necessarily differentiable
and thus unlikely to yield readily to continuous optimization, and a
complete sampling strategy would be costly, as validating each path
during optimization would amount to rendering all the viewpoints
along it.

We therefore make several simplifying assumptions. First, we as-
sume that the second and third goals above can be evaluated by only
examining the renderings of the two endpoints of the camera path.
This simplification assumes that the measures for achieving those
goals are generally greater at the endpoints than at points between
them; e.g., a viewpoint along the line will not have more holes than
the two endpoints, or at least not substantially more. While this as-
sumption is not strictly true, in our experience, samplings of the
space of viewpoints suggest that it often is. Second, we assume that
the camera focal length and optical axis are entirely defined by the
specific pan & scan effect, the camera location, and the linear inter-
polation parameter. For example, a dolly effect starts by pointing at
the first subject of interest, ends by pointing at the second subject
of interest, and interpolates linearly along the way. The focal length
is set to keep the subjects of interest a certain size. As a result of
these assumptions, the problem of choosing a camera path reduces
to finding two 3D camera locations, such that the renderings of both
viewpoints contain few holes and exhibit significant parallax rela-
tive to each other.

4.2.1 Valid viewpoint sampling

We first discuss how to identify viewpoints from which we can
successfully render the input photographs processed by our sys-
tem (measure #2). The set of all viewpoints can be described by
a hypervolume parameterized by the camera parameters described
above. We constrain this hypervolume to the finite region of valid
viewpoints, where a valid viewpoint is defined as a viewpoint from
which the rendered scene is complete or contains holes that are
likely to be inpainted easily. We take advantage of the interactive
renderer described in Section 6 to quickly determine valid view-
points. Given the scene rendered from viewpoint V , we evaluate the
success of the rendering using the following metric H:

H(V) =
∑p∈V [d(p)]k

w×h

where w and h are the width and height of the rendering, d(p) is the
minimum distance from pixel p to a valid pixel, i.e., the boundary
of the hole (d(p) is set to 0 if p is not inside a hole), and k is a
constant. Larger values of k penalize larger holes (which are harder
to inpaint) over many smaller holes; we found k = 3 to be a be good
value. We use a distance transform [4] to compute d(p) quickly. We
consider a viewpoint as valid if H(V) < 2.

The next step is to explore the hypervolume and define the 3D re-
gion of viewpoints that satisfy this viewpoint validity constraint.
We assume that the coordinate system is aligned so that the input
images mostly samples rays from viewpoints spread roughly across
a plane (call it the x-y plane) looking in a direction (call it the z-
axis) roughly perpendicular to that plane. Section 6 and Figure 3a
describe this plane and associated view mesh in greater detail. We
also assume that the centermost viewpoint is roughly at the origin
of the coordinate system. For some effects, such as dolly-out, the
camera motion is constrained to travel down the z-axis of this co-
ordinate system. Other effects have more freedom; for these, we
search for two regions of valid viewpoints, one for the starting and
one for the ending camera viewpoints (since these will have differ-
ent constraints on pointing direction and focal length).

To explore the range of valid viewpoints we uniformly sample along
x and y at z = 0, and then search along z until H(V) exceeds the
threshold. The uniform sampling along x and y is done at a reso-
lution of a 12× 12 grid across a region that is 2 times the size of
the bounding box of the viewpoints in the input light field (we have
explored wider and denser samplings, and found these settings to
be a good trade-off between efficiency and quality). We search in
each direction along z until H(V) exceeds the threshold. We search
using an adaptive step size, increasing or decreasing the step size
by a factor of two depending on whether the H(V) threshold is met
or exceeded, respectively. Figure 1 demonstrates a real example of
such a grid (with a denser 100×100 sampling for visualization pur-
poses), and the results of searching forwards in z.

4.2.2 Maximizing parallax

Next, we need an approach to measuring the parallax induced be-
tween two viewpoints. There are a number of possibilities for mea-
suring parallax. We found that the most perceptually noticeable ar-
eas of parallax are those that are visible in one viewpoint and oc-
cluded in the other. We therefore project the starting viewpoint into
the ending viewpoint and vice versa, and sum up the area of holes;
this sum is our measure of parallax.

We assume that the starting and ending viewpoints will both be
extremal in z; we thus have 144 candidates for both the starting
and ending viewpoints (from sampling the 12×12 grid twice). We
choose the highest scoring pair according to our measure of paral-
lax. Since this measure requires projecting the starting viewpoint
into the ending viewpoint and vice-versa, choosing the optimal pair
would require 2×144×144 projections, which is time-consuming.
However, there is a strong correlation between the length of the
camera path and the amount of parallax. We selected a dozen ex-
amples and performed the full set of projections. We found that the
best pair of viewpoints by our parallax metric was always among
the top 12 pairs when sorted by the length of the camera path. We
therefore increase the speed by only performing the projections on
the 12 longest camera paths, and choosing the one with the most
parallax.

4.2.3 Constraints on the path

Each camera move in our taxonomy imposes specific constraints
on the camera focal length, optical axis, and in some cases, camera

Viewpoint Bounding Surface

0

X

Y 0

Z

Figure 1: A 100× 100 grid of valid viewpoints color coded by z-
value. A mesh connecting the original viewpoints in the input light
field is shown in white. Note viewpoints in the central area are
closer to the original sampled viewpoints; thus they can move much
closer to the scene (larger z) than peripheral viewpoints.

C1

D1

C3

D

Subject of

Interest

x

z2

C2

C4

Figure 2: For one subject of interest, our algorithm locates the lin-
ear camera path (D1D2) for dolly-in/out within the valid hypervol-
ume. D1 and D2 are on the front and back edges of the valid hyper-
volume with respect to the z axis. Here Cx denotes the position of a
viewpoint sampled in the input. Note how D2 adjusts its orientation
and focal length to keep the subject of interest centered.

motion. These constraints are designed to mimic the effect’s typical
appearance as we observed them in documentary films. The con-
straints make use of information that we assume is contained in the
input light field, such as the 3D centroid of the scene (straightfor-
ward to compute given that the input light field contains depth in-
formation), and the average focal length f of the capture device (in
our case a standard camera). We now address each camera move,
beginning with the case where there is no specific subject of inter-
est.

Establishing dolly. The camera always points at the scene centroid,
and the focal length is set to f for both ends of the camera path.

Establishing dolly-out. The camera moves along the z axis, always
pointing at the scene centroid. The starting focal length is set to
1.5 f , and the ending focal length to f . In this case, no sampling
grid across x,y is needed, (though search in the +z direction and
another in the −z direction must be performed).

Next we consider the cases containing one or two subjects of inter-
est. To test for the number of subjects of interest, we run the face de-
tector, truncate to the two largest faces if more than two are found,
and use the detected rectangles to construct a geometric proxy for
the faces. We compute the median depth within each rectangle, and
construct a 3D quadrilateral at that depth. Here we discuss 3D pan
& scan effects for a single region of interest.

Dolly-in/out. In this case (Figure 2), the starting camera points at
the lower half of the rectangle containing the subject of interest (so
that the face is slightly above center), and the ending camera points
at the scene centroid (or vice-versa). The focal length starts at 1.5 f
so that the face is zoomed-in, and ends with f (or vice-versa).

Dolly zoom. Here the algorithm follows the same procedure as
when executing an “establishing dolly-out” with one exception: the
focal length is adjusted during the animation to force the region of
interest to have the same size as seen in the starting viewpoint.

Finally, we consider two regions of interest.

Dolly. The camera starts by pointing at the first subject of interest,
and ends by pointing at the second. The focal length starts at 1.5 f ,
and ends at the same focal length times the ratio of the size of the
subjects of interest (so that the final subject of interest ends at the
same size as the first).

4.3 Image effects

For one or more subjects of interest our solution may choose to
add depth-of-field and/or focus pull effects. Depth-of-field adds an-
other degree of freedom per camera endpoint, namely the aperture
diameter. After the two camera endpoints are chosen, a maximum
aperture diameter must be chosen so that it does not change the va-
lidity of a viewpoint; we therefore search for this maximum. We
assume that an aperture diameter can be evaluated by the maximum
H(V) of the four corners of the bounding box of the aperture. Start-
ing with an initial maximum aperture diameter, we search adap-
tively for bigger apertures until one of the four corner viewpoints
becomes invalid.

To add a changing depth of field to a dolly or dolly in/out, the aper-
ture is linearly interpolated from a pinhole to the maximum aper-
ture. For a focus pull, the aperture is kept at the maximum, and the
in-focus depth is simply transitioned from the depth of one subject
to the other.

4.4 Interactive camera control

We also allow a user to design camera paths that are outside of the
taxonomy giving them the freedom to design novel camera paths,
or to chain together and modify automatically generated paths. The
user is free to navigate, using the interactive renderer, to desired
viewpoints and adjust camera settings, as well as color effects (like
saturation) and enter them as keyframes along a cubic spline path.
Alternatively, the user can author paths by simply drawing one or
more regions of interest, and choosing a camera move from the tax-
onomy; the system will then compute a path using the method for
automatically detected regions of interest. Finally, the user can add
depth-dependent brightness and saturation effects tied to a manu-
ally specified region of interest.

4.5 View morphing

For the special case where only two views are provided as input to
the system, the method of Anonymous [34] computes stereo cor-
respondences using a soft epipolar constraint. The soft constraint
allows for some scene motion. The automatic system simply inter-
polates linearly between correspondences, i.e., morphs between the
views, regardless of scene content.

5 CONSTRUCTING LIGHT FIELDS WITH DEPTH

The input light fields used to create our results are constructed us-
ing existing computer vision techniques from a few photographs

of a scene taken from slightly different viewpoints, either by mul-
tiple shots from a standard camera, or with a single shot from a
multi-viewpoint camera. First, a structure-from-motion system [31]
is used to recover the relative location and orientation of each pho-
tograph, as well as the camera focal lengths.

Next, we compute a depth map for each viewpoint using a multi-
view stereo algorithm [34]. Like some other top-performing stereo
algorithms [16, 27], this method performs an over-segmentation of
the input photographs and then determines a depth per segment,
rather than a depth per pixel. In our representation, within a sin-
gle view, the constant-z segments have spatially varying colors and
can overlap each other, at most two segments covering each pixel,
with blending weights that sum to one at each pixel. We can ex-
press the color and weight variations within a segment using RGBA
textures. By rendering these segmentation-based depth maps into
novel viewpoints, we can effectively “hallucinate” the light field in
the neighborhood of the input views.

6 RENDERING ALGORITHMS

We have developed two rendering algorithms to display novel views
from the textured segments with depth. The first rendering algo-
rithm is implemented as a real-time renderer leveraging the GPU.
The second algorithm is implemented as an off-line renderer and
produces higher quality results; it is used to render the final se-
quences. Both renderers take the same basic approach; we therefore
first describe the general rendering algorithm, and then we describe
the specifics of the interactive renderer implementation including
GPU acceleration, and finally we describe the differences in the
off-line rendering algorithm.

The first step for either rendering algorithm is to construct a view
mesh, a triangle mesh with vertices at the centers of projection
(COPs) of the input views. To construct the mesh, we fit a plane to
the COPs, project them to that plane, and perform a Delaunay trian-
gulation [30]; the connectivity of this triangulation is used, but the
original COP locations are retained. We extend the view mesh by
duplicating the vertices on the mesh boundary (Figure 3a). These
duplicate vertices are positioned radially outward from the mesh
center at a distance four times the distance from the center to the
vertices on the boundary.

To render a single ray from a novel viewpoint, we intersect the ray
with the view mesh. The intersected triangle indicates which three
views will contribute to the ray, and we use the barycentric coordi-
nates of the intersection as the viewing weights associated with the
corresponding views. The ray is then intersected against the seg-
ment geometry in each of the three views. Because each view has
independent reconstructions of scene depths, the same surface point
may be reconstructed with somewhat different depths. We combine
the depths and colors along the ray with a soft z-buffer to resolve
depth inconsistencies [26]. In the end, each color is weighted by a
product of its segment weight, viewing weight, and soft-z weight;
the weighted colors are summed and divided by the sum of the
weights.

For views that are too far from the input views, some rays will in-
tersect no segments; this is most prevalent around depth disconti-
nuities. The resulting holes in the rendering are filled by inpainting.

6.1 Interactive renderer

To render the scene from a novel view at interactive frame rates (at
least 30 fps), we developed a GPU-based algorithm. We render the
scene in four steps. First, we choose which views should contribute
to a pixel value and calculate the per-pixel viewing weight. Second,

we render all of the segments to three offscreen buffers. Third, we
employ a soft z-buffer to resolve depth inconsistencies between the
three offscreen buffers and combine their color values. Finally, we
fill holes using a reverse soft z-buffer and local area sampling.

Rendering the extended view mesh To choose which segments
contribute to the pixel value and to calculate the viewing weights,
we render the extended view mesh from the novel viewpoint to an
offscreen buffer. We encode both viewpoint IDs and the barycentric
weights into the vertex attributes (e.g. color or normal data), so that
the rendering can be used determine which viewpoints contribute to
a pixel and the corresponding viewing weights.

When rendering the extended view mesh, there are two special
cases that should be highlighted. First, if the novel view lies in front
of the view mesh, the projection step requires a backwards projec-
tion. Second, as the novel view moves close to view mesh, we must
take care to avoid a singularity. In this case we use the blending
weights and viewpoint IDs of the nearest point on the mesh.

Rendering segments Next the image segments will be rendered
and combined. First, we note that each final pixel color will ulti-
mately have contributions from three viewpoints. Thus, we create
three off-screen, RGBA rendering buffers. We associate with each
pixel in each rendering buffer a single viewing ID that indicates the
viewpoint that contributes to the pixel (exactly one viewpoint will
contribute to any given pixel in a rendering buffer).

Each segment is rendered as a texture-mapped rectangle. However,
it would be quite inefficient to store each segment in a separate
small texture.2 Recall that each input image is decomposed into
segments that overlap, with at most two segments covering any
pixel. We store two segment images per input view; each pixel in
each segment image has an RGBA color and weight and asociated
segment ID. If an input pixel is covered by only one segment, then
one of the segment images has zero weight (and arbitrary color and
segment ID) at the corresponding pixel location. In practice, the
RGBA components are stored in two textures, and the segment IDs
are stored in one 32 bit texture, with 16 bits per ID.

The 3D rectangle and texture coordinates for a segment are deter-
mined by the bounding box of the segment. Before rendering the
bounding rectangle, we encode segment ID and viewpoint ID as
vertex attributes. The shader uses these attributes in conjunction
with the segment image textures to render the segment color on
the fly. In particular, when rendering a given segment from a given
viewpoint, the pixel shader only selects for the segment image color
with the matching segment ID, and composites it into the rendering
buffer with the matching viewpoint ID (if any).

Before rendering any segments, the segments for each viewpoint
are sorted in front-to-back order. The three rendering buffers are
initialized to black background and zero alpha. Then, all segments
in each viewpoint are rendered in front-to-back order, weighted by
their alphas.

Soft z-buffer We employ a soft z-buffer to combine the three
rendering buffers. We compute a soft-z weight wz at each pixel
by comparing each pixel’s z-value with the z-value of the pixel
closest to the origin of the novel view. This distance ∆z, where
∆z = z− zclosest, is used to compute wz in the following equation:

wz(∆z) =

1 if ∆z ≤ γ
1
2 (1+ cos

(

π(∆z−γ)
ρ−2γ

)

) if γ < ∆z ≤ ρ − γ

0 otherwise

(1)

2We tried this storage mechanism originally, and the performance was

roughly ten times slower than what we describe in this section.

where ρ is the depth range (max−min) of the entire scene, and γ is
set to ρ/10.

The set of wz’s are normalized to sum to one. The depth z is then
given the sum of the z-values weighted by the wz’s. Each viewing
weight stored in the view mesh texture is multiplied by its corre-
sponding wz. These new blending weights are normalized. The fi-
nal pixel value is computed by scaling each pixel by the normalized
blending weight, and combined based on their alpha values.

Hole filling Holes occur when, due to parallax, a nearby segment
separates from a more distant segment. We fill small holes of less
than 6 pixels in diameter during the final soft z-buffer pass. Since
holes occur due to disocclusion, given two neighboring pixels, we
prefer to use the more distant one to fill the gap. To do so, we com-
pute a weighted sum of pixel colors and z-values of the pixels in
a 7× 7 neighborhood. The weights are taken from those used in
the soft z-buffer calculation described above except “in reverse.” In
particular, more distant z-values are given higher weights by setting
the z-values to 1− z.

Color effects and depth of field Image color effects such as selec-
tive brightening and/or desaturation to 3D are constrained to a 3D
bounding region. These effects are potentially any image + depth
operations, including saturation, color shifting, brightening, or re-
lighting. We model the effect after the layer paradigm commonly
used in image and video processing tools such as Adobe Photoshop
or After Effects. Each effect is considered to be an independent
layer composited over the rendered image. If the user applies more
than one effect, its layer is composited in a user specified order.

The effect parameters vary at runtime and include the bounding
3D region, two texture maps consisting of the rendered scene and
the z-buffer, and a boundary compositing parameter. The boundary
parameter allows seamless blending in scenes with a noisy depth
map. This parameter controls effect layer compositing by specify-
ing a Gaussian falloff from the user-specified 3D bounding region.
Each effect may have additional parameters to control its applica-
tion. Finally, each user editable effect parameter can be specified
with keyframes so that the effect can animated along with the cam-
era path.

Efficient, approximate depth-of-field rendering is accomplished in
this framework using a variation on existing methods [3, 15, 7]. For
each pixel, we calculate a circle of confusion based on a user de-
fined aperture size, and blur the result of our rendered scene accord-
ingly. The blurring operation is performed efficiently by loading the
scene into a MIPMAP and indexing into it based on the blur kernel
radius. To improve visual quality, we index into a higher resolu-
tion level of the MIPMAP than strictly needed, and then filter with
a Gaussian filter of suitable size to achieve the correct amount of
blur. Note that when focusing on the background in a scene, this
approach will not result in blurred foreground pixels that partially
cover background pixels as they should, i.e., the blurry foreground
will have a sharp silhouette.

To avoid such sharp silhouettes, when processing a pixel at or be-
hind the focus plane, the pixel shader blends the pixel with a blurred
version of the image at that pixel. The blur kernel size is based
on the average z-value of nearby foreground pixels. The blending
weight given to this blurred version of the image is given by the
fraction of the neighboring pixels determined to be foreground. The
size of the neighborhood is determined by the circle of confusion
computed from the user specified aperture and focal depth.

6.2 Off-line rendering

The higher quality off-line rendering algorithm differs from the in-
teractive renderer in three main ways. First, we extend the soft z-

buffer described above to increase the accuracy of our pixel value
estimate. Second, the renderer uses a texture synthesis approach to
fill any holes and cracks that might appear in a novel view due to
sparse data generated from the input photographs. Finally, depth
of field effects are rendered with increased quality by simulating a
camera aperture.

Soft z-buffer The soft z-buffer calculation is very similar to the pro-
cess described in the real-time renderer. However, rather than using
a traditional hard z-buffering within each viewpoint followed by a
soft z-buffer across viewpoints, all segments from all contributing
viewpoints are combined in a uniform manner.

Hole filling To fill holes the offline renderer uses an approach
similar to the in-painting algorithm of Criminisi et al. [2] with
two modifications. First, to accelerate computation, we search
for matching (5 × 5) neighborhoods within a restricted window
(100× 100) around the target pixel. The second, more significant,
modification is based on the observation that nearly all large holes
occur along depth discontinuities, because some region of back-
ground geometry was always occluded in the input photographs. In
this case, the hole should be filled from background (far) regions
rather than foreground (near) regions. We thus separate the depths
of the pixels along the boundary into two clusters, and use these
two clusters to classify pixels, as needed, as foreground or back-
ground. We fill the hole with Criminisi’s propagation order, using
modified neighborhoods and neighborhood distance metrics. When
copying in pixel color, we also inpaint its z by weighted blending
from known neighbouring pixels, again favoring the back layer. The
inpainted z assists in region selection for color manipulation effects.
Note that Moreno-Noguer et al. [21] also explored depth-sensitive
inpainting, though their application has lower quality requirements
since they use the inpainted regions for rendering defocused regions
rather than novel viewpoints.

Depth of field Our rendering algorithm now provides a way to re-
construct any view within the viewing volume. In addition to chang-
ing viewpoint, we can synthetically focus the image to simulate
camera depth of field. To do so, we apply an approach similar to
what has been done in synthetic-aperture photography [19, 13]. We
jitter viewpoints around the center of a synthetic aperture and recon-
struct an image for each viewpoint. We then project all the images
onto a given in-focus plane and average the result.

7 RESULTS

We have tested our overall approach (including the construction of
the light field from a few photographs) on 208 datasets capturing a
variety of scenes. About half of the datasets (103 out of 208) pro-
duced successful results that were comparable to the results shown
in this paper. The failures were largely due to subject motion and
errors in structure-from-motion and multi-view stereo.

A subset (20) of the successful results are included in the accom-
panying video. Only 2 examples were interactively authored. The
rest were generated entirely automatically through our pipeline. The
best way to experience the cinematic effects produced by our sys-
tem is in animated form, as shown in the supplemental video. The
number of input images ranges from 8 to 15 and are typically cap-
tured with just 3-4 inches of space between the viewpoints. Most
datasets are captured at resolution 1200× 800. A 3GHz PC with
4GB memory and an NVIDIA 8800 class GPU interactively ren-
ders scenes at 30-45 frames-per-second. Automatically generating
a 3D pan & scan effect automatically takes about 3 hours, includ-
ing 10-15 minutes for structure-from-motion, 100-120 minutes for
multi-view stereo, 2-5 minutes for computing the effect, and 25-35
minutes for the off-line rendering.

(a) (b)

Figure 3: (a) The view mesh is extended by creating copies of
boundary vertices and placing them radially outward (red arrow)
from the centroid (red dot) of all of the mesh vertices. The dotted
blue arrow shows a ray projected through the image plane. The
blending weights at this pixel correspond to the barycentric coor-
dinates of the intersected triangle of viewpoints in the view mesh.

Pan & Scan User Study Result

P
re

fe
re

n
ce

 R
a

te

Example ID

Prefer 2D

No Preference

Prefer 3D

Figure 4: The preference rate of the 10 examples in the user study.
Note that fewer than 65% of the subjects preferred the 3D version
of examples 5, 8 and 10; these examples contained the most subtle
parallax or motion, and thus support the notion that maximizing
parallax is important.

While some users may be willing to capture multiple viewpoints, a
single-shot solution is certainly more appealing and would address
the problem of subject motion between viewpoints. To that end, we
include two examples from multi-viewpoint cameras: an integral-
lens camera [5], and the $50 Pop9 film camera.3 The results are
not perfect, notably for the prototype integral-lens camera, due to
chromatic aberrations in the prisms used to capture 20 images at
once. However, these results demonstrate that the small baselines
of these cameras can still yield subtle but noticeable parallax. In
addition, we include two results using two input views with small
scene motion (the guitarist and the smiling girl), for which our au-
tomatic system generates morphs from one view to the other.

Overall, the sequences are smooth and convey mild to strong
motion parallax. However, occasional artifacts can be seen, of-
ten near depth boundaries. These artifacts come from depth mis-
estimates; as multi-view stereo algorithms improve these types of
errors should be reduced.

8 USER STUDY

In order to assess the perceptual quality of the 3D pan & scan ef-
fects, we conducted a user study study with 145 subjects, the major-
ity of whom were in the IT industry but not in the graphics industry.
Each subject was asked to watch 10 examples, with each example
shown in two versions: a 2D pan & scan, and a 3D pan & scan. All

3http://shop.lomography.com/pop9/

effects were rendered at 480× 320 pixels at 30 frames per second
and were 3-5 seconds long. For each example, subjects had to indi-
cate whether they noticed any difference between the two versions
after watching them as many times as they liked. They also had to
select which version they preferred, and optionally provide reasons
for their choices.

The results show that there was a significant perceptual difference
between 3D pan & scan and 2D pan & scan effects. Overall, the two
versions of each example were judged to be different 94% of the
time, and at least 80% of subjects noticed at least some difference
between the two versions on every example.

The results also show that the majority of participants prefer the
3D versions to the 2D ones. Summing over all examples, 70% of
subjects, on average, preferred 3D pan & scan, 16% preferred 2D
pan & scan, and 14% had no preference. As shown in Figure 4,
the preference rate exhibits correlations with the amount of par-
allax contained in each example. Note also that roughly half the
people preferred the 2D to the 3D “dolly-zoom” example (#6 in
Figure 4); in written comments they noted that the 3D effect was
too dramatic and uncomfortable, which is the intended purpose of
the effect. The users’ written comments clearly show that apparent
parallax was the dominant reason (69% of all reasons collected) be-
hind the preference for the 3D results. Taken together, the results of
the user study clearly indicate that the cinematic effects we created
offer a more compelling depiction than a simple 2D pan & scan.

9 CONCLUSION

Recent advances in computational photography have dramatically
increased the amount of information that we can capture from a
scene. Until now, techniques that capture depth along with an im-
age have been used primarily for digital re-focusing, on the assump-
tion that small parallax changes are uninteresting. On the contrary,
we believe that subtle parallax can lead to a richer, more informa-
tive visual experience of a scene that feels fundamentally different
than a still photograph or 2D pan & scan. As multi-view camera de-
signs and computer vision techniques continue to improve, we see
an opportunity for parallax photography to become a widely used
approach to capturing the moments of our lives.

REFERENCES

[1] C. Buehler, M. Bosse, L. McMillan, S. J. Gortler, and M. F. Cohen.

Unstructured lumigraph rendering. In Proc. of SIGGRAPH 2001,

pages 425–432, August 2001.

[2] A. Criminisi, P. Perez, and K. Toyama. Object removal by exemplar-

based inpainting. In Proc. IEEE Computer Vision and Pattern Recog-

nition (CVPR), Jun. 2003.

[3] J. Demers. Depth of field a survey of techniques. In R. Fernando,

editor, GPU Gems 1, chapter 23, pages 375–390. Mar. 2004.

[4] P. F. Felzenszwalb and D. P. Huttenlocher. Distance transforms of

sampled functions. Technical Report TR2004-1963, Cornell Univer-

sity, 2004.

[5] T. Georgiev, C. Zheng, S. Nayar, D. Salesin, B. Curless, and C. Int-

wala. Spatio-angular resolution trade-offs in integral photography.

Proc. of Eurographics Symposium on Rendering, 2006.

[6] S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. B. Cohen. The lumi-

graph. ACM Trans. Graph., pages 43–54, 1996.

[7] E. Hammon. Practical post-process depth of field. In H. Nguyen,

editor, GPU Gems 3, chapter 28. Addison Wesley, 2007.

[8] R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer

Vision. Cambridge University Press, second edition, 2004.

[9] L.-W. He, M. F. Cohen, and D. H. Salesin. The virtual cinematog-

rapher: A paradigm for automatic real-time camera control and di-

recting. In Proc. of SIGGRAPH 96, Computer Graphics Proceedings,

Annual Conference Series, pages 217–224, Aug. 1996.

[10] B. Heigl, R. Koch, M. Pollefeys, J. Denzler, and L. J. V. Gool. Plenop-

tic modeling and rendering from image sequences taken by hand-held

camera. In DAGM-Symposium, pages 94–101, 1999.

[11] D. Hoiem, A. A. Efros, and M. Hebert. Automatic photo pop-up. ACM

Trans. Graph., 24(3):577–584, August 2005.

[12] Y. Horry, K.-I. Anjyo, and K. Arai. Tour into the picture: Using a

spidery mesh interface to make animation from a single image. In

Proc. of SIGGRAPH 97, pages 225–232, August 1997.

[13] A. Isaksen, L. McMillan, and S. J. Gortler. Dynamically reparameter-

ized light fields. ACM Trans. Graph., pages 297–306, 2000.

[14] S. B. Kang and H.-Y. Shum. A review of image-based rendering tech-

niques. In IEEE/SPIE Visual Communications and Image Processing

2000, pages 2–13, 2002.

[15] M. Kass, A. Lefohn, and J. D. Owens. Interactive depth of field using

simulated diffusion. Technical Report 06-01, Pixar Animation Stu-

dios, Jan. 2006.

[16] A. Klaus, M. Sormann, and K. F. Karner. Segment-based stereo

matching using belief propagation and a self-adapting dissimilarity

measure. In International Conference on Pattern Recognition (ICPR),

pages 15–18, 2006.

[17] A. Levin, R. Fergus, F. Durand, and W. Freeman. Image and depth

from a conventional camera with a coded aperture. ACM Trans.

Graph., 26(3):70:1–70:9, July 2007.

[18] M. Levoy. Light fields and computational imaging. IEEE Computer,

39(8):46–55, 2006.

[19] M. Levoy and P. Hanrahan. Light field rendering. ACM Trans. Graph.,

pages 31–42, 1996.

[20] C.-K. Liang, T.-H. Lin, B.-Y. Wong, C. Liu, and H. Chen. Pro-

grammable aperture photography: Multiplexed light field acquisition.

ACM Trans. Graph., 27(3), 2008.

[21] F. Moreno-Noguer, P. N. Belhumeur, and S. K. Nayar. Active refocus-

ing of images and videos. ACM Trans. Graph., 26:671–679, 2007.

[22] R. Ng. Fourier slice photography. ACM Trans. Graph., 24(3):735–

744, Aug. 2005.

[23] R. Ng, M. Levoy, M. Bredif, G. Duval, M. Horowitz, and P. Hanrahan.

Light field photography with a hand-held plenoptic camera. Technical

Report CSTR 2005-02, Stanford University, 2005.

[24] B. M. Oh, M. Chen, J. Dorsey, and F. Durand. Image-based model-

ing and photo editing. In Proc. of SIGGRAPH 2001, pages 433–442,

August 2001.

[25] M. Pollefeys, L. V. Gool, M. Vergauwen, F. Verbiest, K. Cornelis,

J. Tops, and R. Koch. Visual modeling with a hand-held camera. In-

ternational Journal of Computer Vision, 59(3):207–232, Sept. 2004.

[26] K. Pulli, M. F. Cohen, T. Duchamp, H. Hoppe, L. Shapiro, and

W. Stuetzle. View-based rendering: Visualizing real objects from

scanned range and color data. In Eurographics Rendering Workshop

1997, pages 23–34, June 1997.

[27] D. Scharstein and R. Szeliski. A taxonomy and evaluation of dense

two-frame stereo correspondence algorithms. International Journal of

Computer Vision, 47(1-3):7–42, 2002.

[28] S. M. Seitz, B. Curless, J. Diebel, D. Scharstein, and R. Szeliski.

A comparison and evaluation of multi-view stereo reconstruction al-

gorithms. In Proc. IEEE Computer Vision and Pattern Recognition

(CVPR), pages 519–528, June 2006.

[29] J. Shade, S. J. Gortler, L.-W. He, and R. Szeliski. Layered depth im-

ages. In Proc. of SIGGRAPH 98, pages 231–242, July 1998.

[30] J. R. Shewchuk. Triangle: Engineering a 2D Quality Mesh Genera-

tor and Delaunay Triangulator. In Applied Computational Geometry:

Towards Geometric Engineering, volume 1148 of Lecture Notes in

Computer Science, pages 203–222. Springer-Verlag, May 1996.

[31] N. Snavely, S. M. Seitz, and R. Szeliski. Photo tourism: Exploring

photo collections in 3d. ACM Trans. Graph., 25(3):835–846, 2006.

[32] D. Taylor. Virtual camera movement: The way of the future? Ameri-

can Cinematographer, 77(9):93–100, Sept. 1996.

[33] P. Viola and M. Jones. Robust real-time object detection. International

Journal of Computer Vision, 57:137–154, 2004.

[34] K. C. Zheng, A. Colburn, A. Agarwala, M. Agrawala, B. Curless,

D. Salesin, and M. Cohen. A consistent segmentation approach to

image-based rendering. Technical Report CSE-09-03-02, University

of Washington, 2009.

[35] C. L. Zitnick, S. B. Kang, M. Uyttendaele, S. Winder, and R. Szeliski.

High-quality video view interpolation using a layered representation.

ACM Trans. Graph., 23(3):600–608, Aug. 2004.

