Homework2C: Chess Ver2.0

Name Student ID Email Distribution

Lin Liao 0133575 liaolin@cs.washington.edu | Implement the move
generator, quiescence search,
transposition table using hash
scheme.

Tian Sang | 0133587 sang(@cs.washington.edu Design and implement the
evaluation functions for
difference stages.

Ke Zheng | 0133614 kzheng(@cs.washington.edu | Implement the X-board
Protocol with time controller,
the whole control of the
program, and opening book.

We use C++ language to implement the project. We develop and debug our
program on the Visual C++ IDE and use Visual SourceSafe to manage source
code and coordinate cooperation. Since we only use standard C/C++
library in our program, except some minor places, no source code was
changed when we migrated the project from Windows to Linux. G++ is used
to produce executable file on Linux.

This time, we have made remarkable progress in our chess program. Most
of the bugs in our Chess verl.0 have been fixed. It obeys all the chess
rules and is able to make a so—-called wise decision by thinking 5 or 6
or even more plies (using quiecience search). Our chess program
incorporates opening book and different evaluation functions for
different stages as opening, middle and ending. Transportation table is
also implemented and its efficiency is discussed.

We referred to some web sites as listed in reference. But we borrowed
only idea, not souce code.

Signature

Description in Depth

» Quiescence Search
To overcome the effect of horizon, we implemented the quiescence
search in our program. In each node, we store the evaluation value of

its parent node as well as its own value. If a node is a leaf, we
tell if the difference between the evaluation values of its parent
and its own is large enough. If the difference exceeds some
threshold, quiescence search will be activated. The quiescence search
is also a minimax search with off pruning. It differs from a normal
search at two points: first it uses a much simpler evaluating
function, mainly based on materials, to speed up; the other is it
will not expand a node if this node is in quiescence state. The
quiescence search has its own ply limit and children number
upperbound, so we can adjust them seperately.

» Transposition Table
(We referred to [1] for the idea)

A transposition table is simply an array of information about
recently visited positions in the game. Whenever you search a node in
the game tree, you start by looking to see whether the corresponding
position is already in the TT, and, if so, whether the information
held there is useful.

We implement our TT using hash table, as most programs do. We use a
64*13 random long integer array to produce hash keys. Here 64 is the
square number of a board and 13 is the number of different pieces

(including blank). For a board status, the 64 random numbers are
connected using XOR operator and thus produce the hash key. We also
use another 64#*13 random array to make checking number. Using this
method, the probability of collision is nearly zero. In each entry of
hash table, besides checking number, we also store the evaluation
value, ply depth and a flag to indicate if this evaluation value is
the exact value, or is only an upperbound or lowerbound (the reason
is aff pruning). These values make its combination with af pruning
very easy.

» Opening Book
As thousands of strong players have been studying the initial
position and have written about or played their findings. We don’ t
want our program to waste the time rediscovering these moves, so
there is usually a database of ‘approved’ openings.
We do consider incorporating a large database of both opening and
ending which requires large data seeking and reading in specific file
format. But due to limited time, we decided to encapsulate the most
useful opening books into our program. And use the most simple search
technique to find the opening book that can be applied.
» Evaluation Function

The evaluation function is the brain of our chess program, and it
is also a key problem to solve. We try to take all the factors that

lead to win/loss into consideration by including material value, pawn
position, king safety, board control, piece—attack, etc.

We have applied 3 different evaluators, respectively for opening,
mid-game, and end-game. In all there stages, the material value is
the most important factor, but for each stage, some criterion of
evaluation may change. In the opening, we apply some basic rules by
giving high priorities to moving out knights/bishops, castling,
occupy or control the center of the board, and restrict moving the
queen. In the mid-game, we stress the attacking value and king-
safety, if some piece of the opponent is being attacked by us, there
will be a bonus according to the opponent’ s and our piece’ s values.
For king—safety, we restrict moving pawns beside the king by
computing the pawn-structure, and encourage placing more pieces
before our king and threatening the opponent’ s king. We clearly know
if an exchange of pieces is worth. In the end—game, we stress the
king’ s moving out to protect or attack pawns, instead of the king
safety, and we give a high priority to promotion—hopeful pawn
positions. The board control value of all stages, counted by each
square, 1is computed but has a different weight to each stage, for
example in the end-game it is not very important. Our program is also
very reasonable in that if we guarantee our loss, we will resign.

The performance of our program is pretty good! Usually it can last
about 40 moves when playing against GNU chess, and once it lasted 72
moves. Incredibly, it beat some human players when testing it. It is
great that our program does have some intelligence!

» Bit Board

The efficiency of move generator is essential. We use the popular bit
board method to facilitate our move generator. We referred to the
basic description of bit board algorithm on [2] and some other web
sites, but the concrete implementation is designed by ourselves,
although it’ s probably not the optimal. We expend the use of bit
board to compute the control matrix. Control matrix records the
control status of each squrare and is well used in our evaluation
function. We finished most of bit board algorithms in homework2B, and
we added promotion, en passant and castling in this phase.

Discussion:

1. When we use bit board to compute the moves of bishop and queen,
two rotation matrixs are needed to rotate bit board left 45 degree
or right 45 degree [2]. After rotation, we need to rotate them
back to original places. I first thought we could use Rotate4bLeft
matrix to undo the rotation of Rotate4bRight, and vice versa. But
it was totally wrong. Finally we had to design two other matrixs
call Reversed4b5Left and Reverse4b5Right.

2. When we implement the quiescience search, first we used a
different move generator to produce only capture moves. This

method is proved not right at all. The reason is that when you use
minimax tree in quiescience search, if you have only capture
moves, you will often miss those good nodes and make your search
meaningless.

After we implement the hash table, we did some experiments to test
its efficiency. We found hash table is good at two situations.
First is big ply limit number (at least 6, we think). The other is
in the endgame phase. In our program, the possible ply limit is
only 4 or 5, so no obvious improvement is observed. So we turn off
the hash function when we turned in our program. A better solution
may be changing ply limits dynamicly. Since in the endgame phase,
the number of possibe moves is much smaller than middle game, we
can both increate ply limit and use hash function. But we have no
time to implement the idea. That’ s a little pity.

Reference:

1.

http://www .ics.uci.edu/~eppstein/180a/970424 .html

2. http://wwwl. ics.uci. edu/ eppstein/180a/970408. html

