
Feature Selection for Fast Face Matching
Ke ‘Colin’ Zheng

kzheng@cs.washington.edu

Abstract
In this paper, we present a novel algorithm performing face image comparison.
Ababoosting is applied to find the right features in the offline phase and use them to
determine similarity quickly while online. We build hierarchical classifiers to speed up
the online matching process. Extension to our method is described to count for
misalignment images, thus shifted images can be handled correctly. Experiments show
that we achieve good accuracy at a high speed.

I. Introduction
Given two images as a pair, can you quickly tell if they are different or similar? And
further, can you tell how different they are? To put it another way, given an image as a
query, can you find the most similar image to it from a database?
People have been trying to answer these questions for ages ever since computer vision
was born. Various approaches and metrics were proposed [3, 4, and 5]. We can roughly
categorize the approaches into pixel based and feature based methods where pixels or
features are used for comparison. One of the reasons for having these two different
approaches goes to the two sides of the coins that we concern about: speed and accuracy.
Feature based approaches are usually fast, since they work on the certain type of
information extracted from images, such as edge or histogram information. Yet the
features might be limited in a sense that it can’t completely solve the problem. Sum of
pixel difference is the other way to go, but speed problem arouses for this type method as
accessing each pixel multiple times would consume significant amount of memory and
computation. Image difference, or say image matching, is the basis for content based
image retrieval [6]. Speed becomes a bigger issue for this type of application since the
search space grows as the image database grows.
In this paper, we present a fast image comparison technique based on feature selection.
We constrain ourselves to face images only, and even further, we focus on faces of a
particular persons as we are interested in finding features that are not across person.
Inspired by Viola and Jones [2] work in object detection, we achieve feature selection
using model ensemble. Given a big pool of single feature classifiers, we build a strong
classifier from these weak ones using adaboosting. Further, we take the advantage of the
hierarchical structure to build cascaded classifiers to speed up the matching process. But
this approach breaks when faces are not aligned. So we extended the approach using a
family of shiftable features instead of the previous single features. As results would show,
this significantly improves the accuracy for cases of misalignment in translation.
In section 2, we show the setup for data collection. In section 3, the feature selection
framework is presented. Section 4 covers the cascaded feature selection for speed up
while Section 5 solves the misalignment problem by shiftable features. Results are show
in section 6 with a short discussion for future work.

mailto:kzheng@cs.washington.edu

II. Data Acquisition
We collect face images from video streams of people talking with a state-of-art face
tracker hooked in the front end. Based on the face box located by the tracker, face images
are cropped, resized and stored. For each speaker, we build a database of faces of fixed
image size. Our goal is to do face matching in the database as fast as possible. Note even
the current best face tracker can’t locate the face to pixel-wise accuracy, so face images
are likely to be off by a few pixels for each other. As we would see in section 5, this turns
out to be a big issue for our feature selection model.

Figure 1. Face Image in Database

III. Fast Matching via Learned Features
The feature set used here is very similar to Viola and Jones [2] used for fast object
detection. A set of features is defined by differences of rectangular regions in a summed
area table [1] which they have named an integral image. For an image, I, with pixel Iuv,
the corresponding pixel in the integral image IIuv is equal to the sum of all pixels above
(or below) and to the left (or right) of it.

IIuv = Σ i=0→u, j=0→v Iij

Figure 2: Rectangle ABCD = D + A - B – C
Figure 3: Eye image and corresponding integral image.

The integral image can be computed in a single pass through the image. It then allows the
fast evaluation of the integral of any rectangle in the image by accessing and summing or
differencing only four pixels. For example, the sum of all pixels in rectangle ABCD is
equal to IID + IIA – IIB – IIC. The feature set defined by Viola and Jones includes sums
and differences of two, three, and four adjacent rectangles, which can be evaluated from
six, eight, and nine integral image pixel references respectively. The score of a particular
feature, F, applied to an image, a, is simply F(a) = the sum of the white (+) regions
minus the sum of the black (-) regions.
The set of all possible features of any size is very large. They represent an over-complete
basis of Haar wavelet-like filters.

Figure 4: Features represent sums and differences of two, three, and four rectangles.

The hypothesis is that the values of particular small subset of the features can be used to
distinguish between a face and a non-face. Viola and Jones [2] describe a machine
learning approach to find such a set. They present the classifier with a set of positive
(faces) and negative (non-face) examples and determine the best features to be used for
the classifier and threshold values for each feature. They leverage the fact that most
rectangles in an image do not contain a face by training a cascaded set of face rejection
classifiers, each of which can reject most non-faces and pass on only likely candidates for
the next phase of the cascade.
We then extend this work for the task of determining whether one face is sufficiently
similar to the other. This new task requires some rethinking of the machine learning
methodology. In our case, the classifier cannot act on a single image alone (face vs. non-
face) but must act on a pair of images to classify them as similar or non-similar. To do so,
we alter the score that a particular feature returns to be the absolute difference between
the unary feature scores on each of the pair of images under consideration,

F(a,b) = | F(a) – F(b) |.
In addition, in Viola and Jones’ work, the training set was carefully constructed and hand
annotated. We wish to train our classifier automatically from video sequences. To do so,
we annotate each pair as similar (or non-similar) based on the pixel luminance L2
difference between them. More specifically, we examine a sequence of training images,
and measure and record the L2 difference between all pairs of images. We then annotate
pairs to be similar if they are at least α standard deviations less different than the mean
difference:

S(a, b) = 1 if || a - b ||2 < µ – α σ,

 0 otherwise.

where µ and σ are the mean and standard deviation of the L2 distances between all pairs
of images in a sequence from a single person.
Given a positive α we are (almost) assured that most pairs will be marked as non-similar.
We will use this fact to construct an efficient classifier by training a cascade of classifiers,
each of which is good at removing many non-similar pairs (and very few similar pairs)
from contention, while possibly allowing some non-similar pairs to slip through. In other

words, each stage of the cascade should err on the side false positives over allowing false
negatives. Taken together, the complete cascade should efficiently classify all pairs.

Figure 5: Each classifier in a cascade rejects non-similar images. Each stage thus acts on a smaller

subset of possible pairs allowing only the best matches to pass all the way through.

For each stage of the classifier we seek one or more features and associated threshold
values for the feature(s). To err on the side similarity we weight each false negative β
times the cost of a false positive.

• Given pairs of images and their similarity (Pi,Si), Si = 0, 1 for (non-similar
vs. similar)

• Initialize each pair’s weight,
NSS

i N
or

N
w depending on the pair’s

similarity, and NS , NNS = number of pairs annotated similar and non-similar.

11
0, =

• For as many features Fj as needed
1. Normalize the weights to sum to 1
2. For all possible features Fj, find a threshold Tj that minimizes the

misclassifications = βFN + FP. We penalize false negatives (FN) more
than false positives (FP) by a factor of β=5. For each pair Fj(Pi)=1
(similar) if Fj returns a score with absolute value less than Tj, or 0
otherwise.

3. An error, ej is defined to be ej = Σi wi,j |Fj(Pi)-Si |. Given all possible
(Fj,Tj) choose the one that minimizes ej.

4. Set the voting weight of Fj to be Wj = log[(1-ej)/ej]
5. Sum the votes for each pair to classify it V = Σj Wj Fj(P) / Σj Wj
6. If V > τ then P is marked as similar, otherwise non-similar. τ is set to 0.5

or is lowered to allow more pairs to be marked similar until the accuracy
test (.98 times as accurate as the previous stage) is passed.

7. If the chosen feature(s) pass the FP test (.4 times lower % false positives)
go on to the next stage of the cascade, otherwise

8. Reset all the weights to decrease the importance of the pairs that were
properly classified wi,j+1 = wi,j [ej / (1-ej)]. Weights of misclassified pairs
remain unchanged (until normalization in step 1).

9. Go to 1 and choose an additional feature for this stage of the cascade.

How many stages should the cascade contain? More specifically, how can one know
when each stage is trained? Ideally each stage will find the minimum number of features
to reject some fraction of non-similar pairs while incurring minimal error. What should
the fraction be and what kind of error should be tolerated?
In other words, there are some parameters to be chosen, but most can be guided by
intuition, empirical experience, and experience gleaned from the literature. We train each
stage of the cascade until the cascade’s false positive rate is lowered by 40%. In other
words, of all pairs that pass through the first stage, a maximum of 40% can have been
marked as non-similar. After each successive stage the false positive (FP) rate must be at
most 0.4 times the rate after the previous stage. At the same time, each stage is only
allowed to lower its accuracy (1 – false negative rate) by 98%. In other words, the first
stage can only allow the rejected pairs to contain at most 2% that have been annotated as
similar by the L2 norm test. The accuracy can drop by 98% each stage thereafter.
The cascade is stopped when a desired false positive rate is met or there is no more
improvement. Once the cascade is trained and the features and their thresholds and voting
weights set, new image pairs can be evaluated as similar or non-similar extremely
efficiently. For images that are inserted in the database, we store all the unary feature
scores.

Figure 6: First feature for eyes helps locate bright bar between eyes. First two features found for

mouth help locate and measure relative shape of mouth.

We then need only to determine the feature scores for the new image and compare their
difference from the database image under consideration against the threshold for that
feature.
The setting for query in face database is slightly different. We pair the query image with
every image in the database and send them to the cascade classifier. For image pairs that
pass through the whole cascade, we add up their scores for each layer to be the final score.
We sort this score for all pairs survived the cascade, and return the minimum one to be
the most similar one.

VI. Shiftable Features
The approach described above has an important assumption implied that all face images
are aligned perfectly as we would apply the same features to all images at the exact same
location, with exact same dimension. What’s more, L2 norm which we used as the
ground truth assumes pixel-wise alignment as well.

But the actual data we collect violates this assumption heavily, due to the instability of
the face tracker. As the face box located by the tracker might shake along the stream,
quite a number of faces are shifted a few pixels off. We extend the previous framework to
make it applicable for misaligned data.
The first extension is about the L2 norm which we used as ground truth. L2 norm is very
sensitive to alignment, so we extend it to shift window based L2 norm where we shift one
face image around and calculate the L2 difference. We pick the minimum L2 norm
among all shifted versions as the L2 difference. This gives us a better ground truth to start
with.
The other extension is about the training process itself. In our adaboosting framework,
instead of finding one feature every cycle, we find a family of features with the same
dimension, but shifted by 1 pixel in location with each other. Among this series of
features, we pick the one with minimum error to represent the whole family. And the
training framework as well as the classification framework remains the same. The
intuition behind it is that by having families of shifted features, we gain much more
flexibility which in turns gives much better results, for the simple reason that the features
doesn’t have to be at the exact location for all face images, they can be off by a few
pixels yet still be picked.
As a whole, we need to spend more time in training as well as classification since we
need to count for all shifted cases, but the classification is still very light weighted as the
number of feature families are quite small.

V. Results
We have carried out experiments with two different types of data, one with face tracker
and one without it. For the one without face tracker, we simply fixed the location to crop
face out. Our fixed features approach work well on data with manual cropping as the
pictures are better aligned while our shifted feature approach work well on data cropped
by face tracker. The following is the result for shifted feature approach.
We tested the feature training on data from a single person consisting of about 9000 pairs
of images. Half were used for training with the other half reserved for testing. We first
trained a single classifier consisting of 100 features. This resulted in 92% classification
accuracy and 2.7% false positives.
A cascaded-classifier produced 94.2% classification accuracy and 4.1% false positives.
This classifier is extremely simple with three layers of only 2, 4 and 4 features
respectively. The result is comparable to a single classifier with many more features.
We also tested for finding the most similar one out of the database with the same
experiment setup. We use shifted L2 norm to find the most similar one as a comparison.
26% of them return the same face from database and if we increase to find the most
similar three, then 67% of return at least one same face from database.
Our approach is faster in order of magnitude than normal pixel based method. This can be
seen by a simple complexity analysis.
In terms of time complexity, given image size to be S and the number of images to be N,
finding the most similar one in database needs time O(NS) for pixel based approach. For
our method, given the number of features to be M, we need time O(NM+S) to do the
same task. O(S) is the time to build the integral image and O(NM) is the time to do the
searching. M is usually way smaller than S, that’s why it’s faster.

In terms of space complexity, we need space O(NM+S) as we only need to store the
feature scores for all the images in database, not the whole images. Pixel based method
would need O(NS) space for storing everything, which is quite expensive once the
database gets large.

Figure 7. Snapshot of the System, left view is the query while the right view is the database, faces that

are boxed are the similar ones returned.

To summarize, we proposed a way to compare images quickly and accurately. We
applied ababoosting to find the right features in the offline phase and used them to
determine similarity quickly while online. We extend our method to count for
misalignment images and we are able to handle shifting. We still can’t solve scaling and
rotation misalignment, yet it’s promising as our model ensemble framework is very
flexible.

Reference:
1. Crow, F. C., "Summed-Area Tables for Texture Mapping ", Proceedings of SIGGRAPH `84, Computer Graphics,

Vol. 18, No. 3, July 1984, pages 207-212
2. Viola, P. & Jones, M., Robust real-time object detection, International workshop on statistical and computational

theories of vision, 2001.

3. B. Girod, ``What's Wrong with Mean-squared Error?'', in A. B. Watson, editor, Digital Images and Human Vision,
pp. 207-220, MIT Press, 1993.

4. C. E. Jacobs, A. Finkelstein, D. H. Salesin, ``Fast Multiresolution Image Querying'', Computer Graphics
(Proceedings of Siggraph '95), pp. 277-286, (1995)

5. H. Rushmeier, G. Ward, C. Piatko, P. Sanders, B. Rust, ``Comparing Real and Synthetic Images: Some Ideas About
Metrics'', Sixth Eurographics Workshop on Rendering, Dublin, Ireland, pp. 82-91, (1995)

6. R. C. Veltkamp, M. Tanase, “Content-Based Image Retrieval Systems: A Survey”, Technical Report UU-CS-2000-
34,(2000)

	Feature Selection for Fast Face Matching
	Abstract
	I. Introduction
	II. Data Acquisition
	III. Fast Matching via Learned Features
	VI. Shiftable Features
	V. Results
	Reference:

